Handwritten digit recognition using biologically inspired features
نویسندگان
چکیده
Image recognition problems are usually difficult to solve using raw pixel data. To improve the recognition it is often needed some form of feature extraction to represent the data in a feature space. We use the output of a biologically inspired model for visual recognition as a feature space. The output of the model is a binary code which is used to train a linear classifier for recognizing handwritten digits using the MNIST and USPS datasets. We evaluate the robustness of the approach to a variable number of training samples and compare its performance on these popular datasets to other published results. We achieve competitive error rates on both datasets while greatly improving relatively to related networks using a linear classifier.
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملMethods for Enhancing Neural Network Handwritten Character Recognition
An efficient method for increasing the generalization capacity of neural character recognition is presented. The network uses a biologically inspired architecture for feature extraction and character classification. The numerical methods used are, however, optimized for use on massively parallel array processors. The method for training set construction, when applied to handwritten digit recogn...
متن کاملThe biologically inspired Hierarchical Temporal Memory
It is herein proposed a handwritten digit recognition system which biologically inspired of the large-scale structure of the mammalian neocortex. Hierarchical Temporal Memory (HTM) is a memory-prediction network model that takes advantage of the Bayesian belief propagation and revision techniques. In this article a study has been conducted to train a HTM network to recognize handwritten digits ...
متن کاملHolistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملA Cortically Inspired Learning Model
We describe a biologically plausible learning model inspired by the structural and functional properties of the cortical columns present in the mammalian neocortex. The strength and robustness of our model is ascribed to its biologically plausible, uniformly structured, and hierarchically distributed processing units with their localized learning rules. By modeling cortical columns rather than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 99 شماره
صفحات -
تاریخ انتشار 2013